
THE EXPONENTIAL AND THE LOGARITHM

PO-LAM YUNG

In this note, we will introduce the exponential function exp: R→ (0,∞) via a power series,
and study the natural logarithm, which we define to be the inverse function to exp.

To begin with, we recall that the radius of convergence of the power series
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is infinite. Hence the series converges to a function on R, allowing us to make the following
definition:

Definition 1. For every x ∈ R, we define exp(x) to be
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We have the following properties of the exponential function:

Proposition 1. (a) exp is an infinitely differentiable function on R, and

d

dx
exp(x) = exp(x).

(b) exp(0) = 1, and exp(x + y) = exp(x) exp(y) for all x, y ∈ R. In particular,

exp(−x) =
1

exp(x)
for all x ∈ R. (1)

(c) exp(x) > 0 for all x ∈ R, and exp: R→ (0,∞) is strictly increasing on R.

(d) exp(x) ≥ 1 + x for all x ∈ R; in particular, exp(x)→ +∞ as x→ +∞, and exp(x)→ 0 as
x→ −∞.

(e) exp: R→ (0,∞) is bijective.

(f) For any x ∈ R, and any m ∈ Z, n ∈ N, we have
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In particular, the last part of the proposition says the function exp: R → (0,∞) has an
inverse. We will define the natural logarithm to be this inverse, and write the natural logarithm
as log : (0,∞)→ R.

Proof. (a) The radius of convergence of the power series defining exp is infinite. As a result,
exp is infinitely differentiable on R, and
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(b) First,

exp(0) = 1 +
∞∑
k=1

0k

k!
= 1.

Also, let f : R→ R be defined by

f(x) = exp(−x) exp(x).
1
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Then f(0) = exp(0) exp(0) = 1. Also, by chain and product rule, we have that

f ′(x) = − exp(−x) exp(x) + exp(−x) exp(x) = 0.

This shows that f is constant equal to 1, i.e.

1 = f(x) = exp(−x) exp(x)

for all x ∈ R. Hence (1) holds, as desired.
Finally, for each fixed y ∈ R, let g : R→ R be defined by

g(x) = exp(−x) exp(x + y)− exp(y).

Then g(0) = exp(0) exp(y)− exp(y) = 0. Also, by chain and product rule, we have that

g′(x) = − exp(−x) exp(x + y) + exp(−x) exp(x + y) = 0.

This shows that g is constant equal to 0, i.e.

exp(−x) exp(x + y) = exp(y) for all x ∈ R.
Multiplying both sides by exp(x), and using (1), we obtain exp(x + y) = exp(x) exp(y) for
all x, y ∈ R, as desired.

(c) When x ≥ 0, it is clear from the definition of exp(x) that

exp(x) = 1 +
∞∑
k=1

xk

k!
≥ 1.

When x ≤ 0, we then have (by (1)) that

exp(x) =
1

exp(−x)
∈ (0, 1].

Hence exp(x) > 0 for all x ∈ R. In particular,

d

dx
exp(x) = exp(x) > 0,

and exp: R→ (0,∞) is strictly increasing on R.

(d) Let h(x) = exp(x)− (1 + x). Then h(0) = exp(0)− 1 = 0, and

h′(x) = exp(x)− 1

{
≥ 0 if x ≥ 0

≤ 0 if x ≤ 0.

In particular, h(x) ≥ h(0) = 0 for all x ∈ R, i.e. exp(x) ≥ 1 + x for all x ∈ R.
This shows exp(x)→ +∞ as x→ +∞, and exp(x) = 1/ exp(−x)→ 0 as x→ −∞.

(e) Since exp: R → (0,∞) is strictly increasing, in particular it is injective. Also, recall that
exp is differentiable. In particular exp is continuous. Since

lim
x→+∞

exp(x) = +∞, lim
x→−∞

exp(x) = 0,

by intermediate value theorem, we see that exp: R → (0,∞) is surjective. This completes
our proof.

(f) Part (b) above says exp(x + y) = exp(x + y) for any x, y ∈ R. In particular,

exp(mx) = [exp(x)]m whenever x ∈ R and m ∈ N.
This certainly also holds when m = 0, since exp(0) = 1. Also, if x ∈ R and m is a negative
integer, then exp(mx) = 1/ exp(−mx) = 1/[exp(−x)]m = [exp(x)]m as well. Altogether,
this shows

exp(mx) = [exp(x)]m whenever x ∈ R and m ∈ Z. (2)

Now for any x ∈ R, m ∈ Z and n ∈ N, we have (by repeated applications of (2))[
exp

(mx

n

)]n
= exp

(mx

n
· n
)

= exp(mx) = [exp(x)]m.

Taking the n-th root on both sides, we yield the desired identity.
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Let us define now e by

e = exp(1) = 1 +
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Then part (f) above implies that

exp
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whenever m ∈ Z and n ∈ N. Hence the exponential function coincides with the power of the
number e if the power is a rational number; this motivates one to define ex as exp(x), even
when x is just real but not necessarily rational.

Next, we define the natural logarithm log : (0,∞)→ R to be the inverse function to exp: R→
(0,∞).

It is then rather easy to translate the properties of exp above, into properties of log:

Proposition 2. (a) log : (0,∞)→ R is strictly increasing and bijective.
(b) log is differentiable on (0,∞), and

d

dx
log x =

1

x
.

(c) log(1) = 0, and log(xy) = log(x) + log(y) for any x, y > 0. In particular,

log

(
1

x

)
= − log(x) for all x > 0.

(d) For any x ∈ R, and any m ∈ Z, n ∈ N, we have

log
(
x

m
n

)
=

m

n
log(x).

Proof. All these are obvious except (b). But (b) follows from the inverse function theorem. �

We can now derive the power series expansion for log(1 +x). Note that this holds only when
|x| < 1.

Proposition 3. For |x| < 1, we have

log(1 + x) = x− x2
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Proof. In fact, the power series on the right hand side has coefficients
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n

so it radius of convergence is

1
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This allows us to define a function f : (−1, 1)→ R, by

f(x) = x− x2

2
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3
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6
+ . . . for |x| < 1.

We can compute the derivative of f(x) by the above theorem:

f ′(x) = 1− x + x2 − x3 + x4 − x5 + . . . for |x| < 1.

One can sum the right hand side above, since it is a geometric series:

f ′(x) =
1

1 + x
for |x| < 1.

Hence

f ′(x)− d

dx
log(1 + x) = 0 for |x| < 1.
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From the mean-value theorem, it follows that f(x)− log(1 + x) is a constant on (−1, 1), i.e.

f(x)− log(1 + x) = f(0)− log(1 + 0) = 0, for |x| < 1.

This proves the desired identity. �

Finally, we can now prove the following formula for exp(x):

Proposition 4. For any x ∈ R, the limit

lim
n→∞
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exists, and is equal to exp(x).

In particular, the limit lim
n→∞
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exists, and is equal to e.

Proof. Note that by part (d) of Proposition 2, whenever x ∈ R and n ∈ N, we have(
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Now
lim

t→+∞
t log
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)
exists and is equal to x; this is just a simple application of L’Hopital’s rule (which is justified
since we know the derivative of log now). Hence

lim
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also exists and is equal to x. It follows (by continuity of exp) that
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also exists, and is equal to
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[
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= exp(x),

as was to be proved. �


